Skip to main content

Articles

Frances Yates described the memory strategy valued by the ancient Greeks and Romans as the "Art of Memory" in her widely quoted and seminal book The Art of Memory. Today we know it as the method of loci. But the Art of Memory, as those of the ancient world and those of the medieval world practiced it, is far richer than is implied by that title.

Consider our facts about blood:

  • arteries are thick and elastic and carry blood that is rich in oxygen from the heart.
  • veins are thinner, less elastic, and carry blood rich in carbon dioxide back to the heart.

We could, as is often advised, simply turn these into why questions. And we can answer these on the basis of the connections we’ve already made:

Why are arteries elastic?

Because they need to accommodate changes in pressure

Why are arteries thick?

Because they need to accommodate high pressure

Back in 2010, I read a charming article in the New York Times about a bunch of neuroscientists bravely disentangling themselves from their technology (email, cellphones, laptops, …) and going into the wilderness (rafting down the San Juan River) in order to get a better understanding of how heavy use of digital technology might change the way we think, and whether we can reverse the problem by immersing ourselves in nature.

What do we mean by word-finding problems?

Here are some examples:

  • increasing use of circumlocutions rather than specific terms (e.g., "I wonder where the thing that goes here is")
  • use of empty phrases, indefinite terms, and pronouns without antecedents (i.e., referring to something or someone as "it" or "him / her" without first identifying them by name)
  • increased frequency of pauses

These problems are all characteristic of Alzheimer's, but also, to a much lesser extent, of normal aging.

You may have heard of “g”. It’s the closest we’ve come to that elusive attribute known as “intelligence”, but it is in fact a psychometric construct, that is, we surmise its presence from the way in which scores on various cognitive tests positively correlate.

In other words, we don’t really know what it is (hence the fact it is called “g”, rather than something more intelligible), and in fact, it is wrong to think of it as a thing. What it is, is a manifestation of some property or properties of the brain — and we don’t know what these are.

I want to talk to you this month about an educational project that’s been running for some years here in New Zealand. The Project on Learning spent three years (1998-2000) studying, in excruciating detail, the classroom experiences of 9-11 year olds. The study used miniature videocameras, individually worn microphones, as well as trained observers, to record every detail of the experiences of individual students during the course of particular science, maths, or social studies units.

One of the points I mention in my book on notetaking is that the very act of taking notes helps us remember — it’s not simply about providing yourself with a record. There are a number of reasons for this, but a recent study bears on one of them. The researchers were interested in whether physically writing by hand has a different effect than typing on a keyboard.

The Suggested Benefits of Homework

The most obvious presumed benefit of homework is, of course, that it will improve students' understanding and retention of the material covered. However, partly because this (most measurable) benefit has not been consistently demonstrated, it has also been assumed that homework has less direct benefits:

Brain autopsies have revealed that a significant number of people die with Alzheimer’s disease evident in their brain, although in life their cognition wasn’t obviously impaired. From this, the idea of a “cognitive reserve” has arisen — the idea that brains with a higher level of neuroplasticity can continue to work apparently normally in the presence of (sometimes quite extensive) brain damage.

In the following case study, I explore in depth the issue of learning the geological time scale — names, dates, and defining events. The emphasis is on developing mnemonics, of course, but an important part of the discussion concerns when and when not to use mnemonics, and how to decide.


The Geological Time Scale

Phanerozoic Eon 542 mya—present

  Cenozoic Era 65 mya—present